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In vitro display technologies are powerful tools for screening peptides with desired
functions. We previously proposed a DNA display system in which streptavidin-fused
peptides are linked with their encoding DNAs via biotin labels in emulsion compart-
ments and successfully applied it to the screening of random peptide libraries. Here
we describe its application to functional and folded proteins. By introducing peptide
linkers between streptavidin and fused proteins, we achieved highly efficient (>95%)
formation of DNA-protein conjugates. Furthermore, we successfully enriched a glu-
tathione-S-transferase gene by a factor of 20-30-fold per round on glutathione-cou-
pled beads. Thus, DNA display should be useful for rapidly screening or evolving pro-
teins based on affinity selection.
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Determining the functions of proteins is an important
task in the process of applying data from the human
genome project to achieve new advances in therapeutics,
diagnosis, and medicine. One approach is to search for
interaction partners, including ones for protein-protein,
small molecule-protein, and nucleic acid-protein interac-
tions. So far, several methods have been used. The yeast
two-hybrid approach has been a leading technology for
identifying protein interactions (reviewed in Ref. 1).
However, it has significant limitations that arise because
the interactions take place in a living system. Mass spec-
trometric identification of proteins after affinity chroma-
tography is also a powerful technology (reviewed in Ref.
2). However, this approach often fails after laborious and
time-consuming efforts to afford sufficient amounts of
purified proteins due to low-level expression or inade-
quate purification. Protein microarrays (Ref. 3 and refer-
ences therein) are another alternative for systematically
identifying protein-protein interactions and drug recep-
tors. However, they require the preparation of a large
number of proteins and the use of special equipment such
as microarrayers.

Display technologies that link genotype and phenotype
molecules comprise a powerful alternative [reviewed in
(4-6)]. Large libraries can be screened iteratively by
amplifying selected genes in host cells or PCR, so even
very low copy number proteins can be identified. Phage
display (7) is the most widely used display technology,
though its use has been significantly hampered by the
limitations of producing libraries in a living system. As
proteins are expressed as fusions to phage coat proteins
in bacterial cells, those that are toxic or that abrogate the
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assembly of virion particles are not displayed. Indeed,
only proteins containing less than 200 amino acids (aa)
have been screened from phage-displayed cDNA libraries
(8—11). Previously, we developed an in vitro DNA display
system called ‘STABLE’ (12), which allows the complete
in vitro construction of DNA-displayed peptide libraries.
Recently, we showed that short linear peptides that bind
to a monoclonal antibody could be screened from a ran-
dom peptide library (13). In the present study, we have
displayed a folded, functional protein on linear DNA and
selectively enriched a glutathione-S-transferase (GST)
gene by affinity purification with glutathione-immobi-
lized beads.

In vitro compartmentalization utilizing water-in-oil
emulsions was originally developed by Tawfik and Grif-
fiths to cage a single gene per micelle and to select cata-
lytically active proteins (14). In our DNA display strategy
(Fig. 1), proteins are expressed as streptavidin (SA)-
fusion proteins in order to conjugate the proteins to their
encoding DNAs with biotin labels in emulsion compart-
ments. The resulting DNA-protein conjugates are
selected by affinity purification followed by PCR amplifi-
cation.

Since the conjugation of a protein to its encoding DNA
is a crucial step in DNA display, we examined whether or
not folded proteins fused to SA can be efficiently conju-
gated to a biotinylated DNA (Fig. 2). When a BLIP gene
(encoding a 165-aa protein, Ref. 15) was directly fused to
the SA gene and expressed as a fusion protein, about half
of the input DNA was not conjugated to the protein (Fig.
2B, lanes 1 and 2). To reduce steric hindrance, which may
affect the formation of DNA-protein conjugates, peptide
linkers were introduced between SA and BLIP (Fig. 2A).
We chose a ~22-aa linker containing a hemagglutinin-tag
(HA), a ~50-aa linker containing a hemagglutinin-tag
and a glycine/serine-rich sequence (GS), which is often
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Fig. 1. A schematic representation of the DNA display selec-
tion procedure. (1) A DNA library encoding SA-fusion proteins is
labeled with biotin and compartmentalized in a water-in-oil emul-
sion containing an in vitro transcription/translation system. (2) In
each compartment, SA-fusion proteins are synthesized and
attached to the template DNA via biotin labels. (3) DNA-protein
conjugates are recovered from the emulsion and (4) subjected to
affinity selection on an immobilized bait. (5) After washing and elu-
tion, the DNA portion of the bound molecules is amplified by PCR.
(6) DNA is subjected to the next round of selection or (7) identified
by sequencing. Although SA-fusion proteins form a tetramer and
thus four copies of protein can be displayed, only one copy of the
protein is shown in this figure for simplicity.

used in ribosome display, and a ~40-aa linker containing
EAAAK repeats (HL), which forms a helical structure
and effectively separates the domains of bifunctional pro-
teins (16). The insertion of peptide linkers improved the
efficiency of formation of DNA-protein conjugates. The
efficiency reached ~70% when HA was introduced (Fig.
2B, lanes 3 and 4) and >95% when GS or HL was intro-
duced (Fig. 2B, lanes 5-8).

While the total yields of synthesized proteins were
almost constant, the proportion of tetrameric protein rel-
ative to total protein increased when peptide linkers
were introduced (data not shown). This effect was largely
dependent on the length of the linkers. These results sug-
gest that tetramerization of SA-fusion proteins, which is
required for tight association with biotin (17), was
enhanced when relatively long peptide linkers were
introduced and that it allowed highly efficient formation
of DNA-protein conjugates.

Furthermore, proteins other than BLIP (~20 kinds)
whose sizes were in the range of 102-1012 aa were fused
to SA through GS or HL. We also examined C-terminal as
well as N-terminal SA fusions. All proteins showed the
formation of DNA-protein conjugates with an efficiency
of >95% (Fig. 2B, lanes 9-18, and unpublished data).

It is unclear how large proteins can be used for screen-
ing with other in vitro display technologies based on cell-
free translation, such as ribosome display (18-20) and
mRNA display (21-23). In ribosome display, scFv (single
chain antibody fragments, ~300 aa) from large libraries
and folded proteins of up to 400-aa in length in model
systems have been selected (19, 20, 24-26). In mRNA dis-
play, the sizes of proteins screened so far have been
restricted to ~100 aa (21, 22). In our DNA display system,
larger proteins can potentially be selected.
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Fig. 2. Formation of DNA-protein conjugates. (A) A schematic
representation of DNA constructs for in vitro transcription/transla-
tion. DNA constructs were labeled by PCR with fluorescein at the
upstream ends and with biotin at the downstream ends using
labeled primers as described (I3). Plasmids were constructed by
modifying pSta4 (13) using standard subcloning techniques (28).
The translated open reading frame consists of sequences for a T7-
tag, streptavidin (SA), a peptide linker, and a fused protein (gene).
The amino acid sequences of the linker portions are YPGSQLYPY-
DVPDYASLGGHMA (22 residues, termed HA), YPGS(GGG-
GS);GGGRSQLYPYDVPDYASLGGHMA (52 aa, termed GS) or
SA(EAAAK),ARSQLENLYFQGGS (36 residues, termed HL). DNA
fragments coding for BLIP and Rae28/Mph1 were amplified by PCR
from plasmids carrying these genes (29, 30). GST and luciferase
genes were amplified from pGEX-4T-3 (Amersham) and TNT con-
trol template (Promega), respectively. Histone H4 and RYBP genes
were amplified from a mouse testis cDNA library (Clontech). All
DNA sequences were confirmed with a CEQ2000 sequencer (Beck-
man Coulter). (B) In vitro transcription/translation was performed
using a TNT-SP6 coupled wheat germ extract (Promega) with 10
nM DNA templates in the presence (+) or absence (-) of 0.1 mM free
biotin competitor. The reaction products (3 pl) were separated in 2%
agarose gels containing 0.1% SDS prepared with Seakem Gold aga-
rose (BioWhittaker Molecular Applications). DNA (open arrow-
heads) and DNA-protein conjugates were detected via fluorescence
using Molecular Imager FX (Bio-Rad). DNA-protein conjugates ex-
hibited lower mobility than free DNA. The multiple bands of DNA-
protein conjugates originate from binding of different numbers of
DNA molecules to a tetramerized SA-fusion protein in non-emulsi-
fied reactions. The size of each displayed protein excluding the SA
and linker portions is indicated in parenthesis.

Next, we addressed whether or not the GST gene can
be enriched with our DNA display strategy. DNA tem-
plates for SA-fusion of GST or RYBP, as a negative con-
trol, were mixed in a ratio of 1:10 or 1:1,000, and then
used for affinity selection on glutathione-coupled beads.
As shown in Fig. 3A, the DNA band corresponding to
GST was enriched after selection. By conducting two
rounds of selection from the 1:1,000 mixture, GST was
enriched to a detectable level (Fig. 3A, lanes 3-5). To con-
firm the enrichment efficiency, each DNA sample was
subjected to quantitative real-time PCR (Fig. 3B). From
the 1:1,000 mixture, the GST gene was enriched ~700-fold
after two selection rounds, which corresponds to 20-30-
fold per round. These results indicate that our DNA display
system is applicable to the selection of folded proteins.
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Fig. 3. Affinity enrichment of GST. (A) The DNA construct
encoding GST-HL-SA (1,388 bp) was mixed with that for RYBP-HL-
SA (1,406 bp) in a ratio of 1:10 or 1:1,000 to be subjected to the DNA
display selection procedure. In vitro transcription/translation in an
emulsion and recovery of DNA-protein conjugates were performed
as described (13). The DNA-protein conjugates were incubated with
25 pl of glutathione-Sepharose 4B (Amersham) on a rotator for 1 h
at 4°C. After extensive washing with PBST (137 mM NaCl, 8.1 mM
NaH,PO,, 2.7 mM KCI, 1.5 mM KH,PO,, 0.5% Triton X-100, pH
7.4), bound molecules were eluted with 40 pl of elution buffer (10
mM glutathione, 50 mM Tris-HCl, 50 mM NaCl, pH 7.5). PCR
amplification of the eluates was performed as described (13) with a
PCR program consisting of 30 cycles of denaturation (95°C, 20 s),
annealing (58°C, 20 s), and extension (68°C, 100 s). The amplified
products were purified with QIAquick and used for the next round
of selection or analyses. PCR products amplified from fractions
before (RO) or after the first (R1) or second (R2) round of selection
were digested with Bcll to selectively cleave the GST gene, sepa-
rated in 2% agarose gels, and detected via fluorescein present at the
upstream ends of DNA fragments. (B) The content of the GST gene
in each fraction. DNA (0.2 fmol) was subjected to quantitative real-
time PCR with GST-specific primers (GCTGACAAGCACAACATGT
and GCAATTCTCGAAACAC) using a LightCycler (Roche). The
DNA template for GST was mixed with that for RYBP in a ratio of
1:0, 1:10, 1:100 or 1:1,000, and used as a standard (r = —1.00).

The DNA genotype offers several advantages com-
pared with the RNA genotype in ribosome display and
mRNA display. The selection procedure for DNA display
does not require strictly RNase-free conditions because of
the chemical stability of DNA. As the removal of stop
codons is unnecessary, translation products of cDNA
libraries can be easily displayed. In addition, DNA dis-
play does not require several complicated steps essential
for mRNA display, such as transcription, ligation of puro-
mycin to the 3’-end of mRNA, and reverse transcription.
The simplicity of DNA display allows one or even two
selection rounds to be conducted per day while the other
methods mentioned above mostly require 1-3 days for
each selection round.

Microbead display is also based on an in vitro compart-
mentalization system for linking a protein with DNA on
microbeads (27). In this system, a library containing ~10°
repertoires can be subjected to selection by means of flow
cytometry. The selection process for DNA display is based
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on affinity purification and the library size can be easily
extended.

In summary, we demonstrated that folded proteins of
even larger than 1000 aa can be efficiently displayed on
the corresponding biotinylated DNA templates by insert-
ing peptide linkers between SA and fused proteins. The
resulting DNA-protein conjugates can be affinity-
enriched by a factor of 20-30-fold per round. The DNA
display system should be useful for rapidly screening or
evolving proteins based on affinity selection.
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